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AI/ML is being used widely throughout the entire patient
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Cervical Cancer Screening (collaboration with NCI)

Cervical cancer is a leading cause of cancer morbidity and mortality
worldwide

Persistent infections with high-risk human papilloma virus (HPV)
strains remain the strongest risk factor for subsequent neoplastic
growth

Screening of the cervix by visual inspection after application (VIA) of
acetic acid

ML algorithm for analysis of images of the cervix, in conjunction with
HPV testing can be used in global screening programs
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Age-standardised mortality (per 100000 women-years)
B Oto <15 (Bcountries) [ 12010 <150 (14 countries)
B 1-5to <30(34 countries) [ 150to <18-0 (9 countries)
B 3010 <45 (21 countries) [l 18-0to <21.0 (8 countries)
3 45t0 <6-0 (18 countries) [l 21.0to <240 (7 countries)
16010 <7-5 (14 countries) [l 24.010 <27-0 (4 countries)
3 75t0 <90 (12 countries) 1l 27-0to <300 (2 countries)
3 90t0 <12.0 (19 countries) [ 30-010 42:0 (15 countries)

Sources: Arbyn, Marc, et al. The Lancet Global Health 8.2 (2020): e191-e203.



MOONSHOT INITATIVE

Candidate single step
screening + primary triage
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HUMAN PAPILLOMAVIRUS AND
AUTOMATED VISUAL EVALUATION

Candidate secondary triage
Al-based Automated visual
evaluation with a mobile
image capture device

Nﬁ

Precance

Desai K. et al. Infect Agent Cancer 2020

Combined with treatment

Battery-operated point-of-
care ablation devices

Mobile LLETZ devices



PAVE risk stratification

Risk Stratification Risk Modifier Risk-based management
Recommendations
Screening visit Triage visit Immediate
: A Treatment or
HPV ——= Higher | Referral
genotype ‘ o
hrHPV test Positive Estimated
& precancer risk
No treatment
Automated Lower & Surveillance
Visual
Evaluation
2
]
oa
2
< Table 2
m

Reassurance

Risk strata created by using HPV genotyping and AVE classification.

HPV
risk
group*®

Precancer+

AVE Classification
Indeterminate
HPV16
HPV18/45
HPV31/33/35/52/58
HPV39/51/56/59/68

*In case of multiple infections, the result will be hierarchical, as HPV16 else HPV18/45 else HPV31/33/35/52/58 else HPV39/51/56,/59/68. For analyses with limited
numbers, the two middle categories (HPV18/45 group and HPV 31/33/35/52/58 group) can be combined, leading to a three-part scale (HPV16, intermediate, low).
The expectation is that the ordinality of the scale will remain constant across settings but the absolute risk of precancer+ may vary by population characteristics.
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REPRODUCIBLE AND CLINICALLY TRANSLATABLE DEEP
NEURAL NETWORKS FOR CERVICAL SCREENING
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Mark Schiffman®, Jayashree Kalpathy-Cramer"

Assessing generalizability of an Al-based visual test for cervical
cancer screening
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It is becoming really easy to create an Al algorithm today!

Annotations

Al Algorithm

Al algorithm

Title

Performance of an Al algorithm for the diagnosis of retinopathy of prematurity

Abstract

Retinopathy of prematurity (ROP) is a potentially blinding eye disorder that affects
premature infants. Early diagnosis and treatment of ROP is critical for preserving vision
and preventing blindness. In recent years, artificial intelligence (Al) algorithms have shown
promise for the automated diagnosis of ROP. In this study, we evaluated the performance
of an Al algorithm for the diagnosis of ROP using a dataset of fundus images from

premature infants.

We trained a convolutional neural network (CNN) on a dataset of 5,000 fundus images
from premature infants with and without ROP. We evaluated the performance of the CNN
on a separate dataset of 1,000 fundus images from premature infants, including 500
images with ROP and 500 images without ROP. We measured the sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV), and accuracy of the CNN
for the diagnosis of ROP.

Our results showed that the CNN achieved a sensitivity of 95.2%, a specificity of 93.8%, a
PPV of 92.1%, an NPV of 96.2%, and an accuracy of 94.5% for the diagnosis of ROP. The
area under the receiver operating characteristic curve (AUC-ROC) was 0.96, indicating

excellent diagnostic accuracy.

Our study demonstrates that an Al algorithm based on a CNN can achieve high diagnostic
accuracy for the diagnosis of ROP. The use of Al algorithms for the automated diagnosis
of ROP has the potential to improve the efficiency and accuracy of ROP screening
programs, particularly in resource-limited settings where access to ophthalmologists and

specialized equipment may be limited.



Cervical cancer screening using deep learning for AVE

ARTICLE

An Observational Study of Deep Learning and Automated Automated visual evaluation of enrollment
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Follow up publication in cervical cancer highlighting some of the

challenges

Received: 7 July 2021 | Revised: 24 September 2021 | Accepted: 15 October 2021

DOI: 10.1002/ijc.33879
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The development of “automated visual evaluation” for cervical
cancer screening: The promise and challenges in adapting
deep-learning for clinical testing
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Productive Infection Transforming Infection

Natural history model

2 | STEP-WISE CONSIDERATIONS
FOR AI-BASED AVE

24 | Validation of the output of the algorithm

241 | Reproducibility of AVE

24.2 | Internal validity of AVE

243 | External validity (generalizability) of AVE and
avoiding overfitting

244 | Device portability of AVE

24.6 | Risk prediction: “calibration” of AVE

247 | Predicting immediate vs future risk
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AI-based image analysis in clinical testing: lessons
from cervical cancer screening
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Lessons learned

1) Specity rigorously what the algorithm is designed to identify and what
the test is intended to measure, e.g., screening, diagnostic, or
prognostic.

2) Design the AI algorithm to minimize the most clinically important
errors.

3) Evaluate Al algorithms like any other test, using clinical
epidemiologic criteria.

4) Link the Al algorithm results to clinical risk estimation.

5) Generate risk-based guidelines for clinical use that match local
resources and priorities.



Challenges in “real life” AI deployment

Generalizability— models are brittle and do not generalize across
scanners, populations, disease presentation

Model predictions may not be repeatable!

Gray zone” -many diseases lie on a spectrum, ratings are
binary/ordinal

Calibration- commonly used approaches for binary models can lead
to poorly calibrated models

«  Silent failures — models may fail without indication (”confidently

wrong”)
Overfitting — reported model performance can be over-optimistic
Explainability

Models can be biased (in hard to detect ways)



Problem 1: “Brittleness” of machine learning models

Deep learning models do not generalize well

Only 6% of published Al studies have external validation (Kim
et al., KJR, 2019)

Data heterogeneity can lead to poor model performance on external
datasets.



Few FDA approved Al devices have been evaluated externally

How medical Al devices are evaluated:
limitations and recommendations from an

analysis of FDA approvals

A comprehensive overview of medical Al devices approved by the US Food and Drug Administration sheds new
light on limitations of the evaluation process that can mask vulnerabilities of devices when they are deployed on

patients.

Eric Wu, Kevin Wu, Roxana Daneshjou, David Ouyang, Daniel E. Ho and James Zou
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Images acquired on different devices can be quite different

tsne - resnet50 - gt

«  cellphone
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Xue et al, 2021 doi:10.1109/ cbms52027.2021.00085



“Portability challenges” in cervical cancer

Good case- Poor case-
control control
discrimination discrimination
on cervigram on cervigram
V1 image V1 images

Cervigram V1

algorithm Combined model

Cervigram

Good case- Poor case- Vi
control control

Cervigram V2 discrimination discrimination

algorithm on cervigram V2 on cervigram
images V1 images

08

Good case-
control
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on both
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& V2
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V2

Cervigram V2 (ALTS) 0.86 07

onv

. 06
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Cervigram V1 (NHS) Cervigram V2 (ALTS)

Test set

Slide: KananDesai/Mark Schiffman .



Solution 1: WIP!

Increase data diversity

Multi-institutional databases

Out of distribution detection

Novel Al methods to improve generalization
Federated learning

Self-supervised learning



Problem 1: Evaluation plan

Curate multi-institutional or multi-scanner datasets

Consider ways in which “out-of-distribution” input may occur
* Different scanners

* Poor quality

* Wrong anatomy/modality/view

* Different demographics (e.g. pediatric)

Evaluate performance on unseen datasets

Continuous monitoring



Problem 2: DL Model predictions are not repeatable!

A
replicat

(a) (Iﬁknﬁ Normal) (b) Model prediction: 0.98 (Pre-cancer )
Fig. 1: I o eatability issues from deep learning models
on different images of a cervix with precancerous lesions from the

same p. l@?@ ame day. A binary model without dropout layers
generated the ®llowing outputs. (a) the binary model predicts a normal cervix

(severity 1oy the binary model predicts pre-cancer (severity score:

v 1.00
S 0.75
+ 0.50
L 0.25
Q

< 0.00

Retest

Knee osteoarthritis

GT label: Doubtful - Target score: 1

5-class pred.: 2.03 5-class pred.: 0.02
MC 5-class.: 1.36 MC 5-class.: 1.27

Little published literature on model repeatability/reproducibility

Many models are not repeatable when tested!.

Desai K et al. IJC 2021;

Lemay et



Problem 1: Test-retest repeatability can be an issue

Challenge: A replicate set of images from a woman during same examination

with same device, yielded different results (lack of repeatability)

Comparison of 2 AVE Scores from different images of the same women

AVEuS‘);fEI
This
issue Desai K et al. 1JC 2021;
was

24



+PAIR EXPLORABLES

From Confidently Incorrect
Models to Humble Ensembles

Combining Models Reduces Overconfidence

By averaging the output of multiple models, a technique known as ensembling, we can create a model

1 Piecewise Linear Modnl '
— 20 Piecewise Linear Models

1 Piecewise Linear Model
[

1 Piecewise Linear Model
[

* https://pair.withgoogle.com/e




Solution 1: Monte Carlo approaches may improve repeatability
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Problem 2: Evaluation plan

Curate datasets to evaluate repeatability/reproducibility

« If ethical, acquire test-retest datasets of the same patients

* If not, generate datasets with slight variations (e.g. flip image,
rotate image slightly)



Problem 3: Real World is a Often a Continuous Spectrum

Expert | Database B

Reference

Average -----l:ll:l

Campbell et al, Ophthalmology 2016;123:2338-44.
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Problem 3 Diseases lie on a spectrum

Productive Infection

Molecular

Microscopic
(Histopathologic)

Visual

I Natural history model

Normal cervix

Cleal\imce

FIGURE 3 The AVE classification categories are expected to be consonant with the four biological distinct stages in the natural history and
pathogenesis of cervical cancer. Reprinted with permission from Schiffman et al??; Histopathology image source: Desai et al?® [Color figure can

be viewed at wileyonlinelibrary.com]

Not recognizing equivocal changes can lead to extreme mis-classifications and grave errors

Slide:
Desai et



Problem 3: DL model may have extreme
misclassifications/confidently wrong

Challenge: Distinguishing HPV related equivocal changes from precancer is challenging
leading to extreme misclassification by binary AVE classifier

Classification

Normal Precancer+

Normal 93.7%

Ground

Truth Precancer+




Solution 3: Introduce a “gray zone”

Solution: Adding equivocal class in training a three-class ordinal classifier reduced
serious misclassification

Classification

Precancer+

@GR Equivocal | 35.8% 30.2% 34%

Truth
Precancer - 11.4% 80%
+

Normal |Equivoca

1
Normal 83.7% 13.4%




Solution 3: Generate continuous output variables instead

of binarv values

npj | Digital Medicine

www.nature.com/npjdigitalmed

'.) Check for updates

ARTICLE OPEN
Siamese neural networks for continuous disease severity
evaluation and change detection in medical imaging

Matthew D. Li(®', Ken Chang', Ben Bearce', Connie Y. Chang? Ambrose J. Huang? J. Peter Campbell (3?, James M. Brown (",

Praveer Singh', Katharina V. Hoebel', Deniz Erdogmus®, Stratis loannidis®, William E. Palmer?, Michael F. Chiang (3*® and
Jayashree Kalpathy-Cramer (3"
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Problem 3: Evaluation plan

Generate datasets with multiple raters
Generate datasets along disease spectrum

Evaluate (binary) models on nuanced cases



Problem 4: Models may fail silently

Deep
learning
approac
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Solution 4: Bayesian DL approaches (Monte Carlo) may
provide estimates of voxel and patient level uncertainty

Such
applrg:lo aC dice UNet dice ensemble  wcc ensemble dice MC dropout  wee MC dropout
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Solution 4: Methods such as MC may improve calibration
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Validation

Opinion | Open Access | Published: 24 February 2023

There is no such thing as a validated prediction
model

Ben Van Calster, Ewout W. Steyerberg, Laure Wynants & Maarten van Smeden

BMC Medicine 21, Article number: 70 (2023) | Cite this article
6781 Accesses | 178 Altmetric ‘ Metrics

Reason 1: patient populations vary
Reason 2: measurements of predictors
or outcomes vary

Reason 3: populations and

measurements change over time
https://bmcmedicine. biomedcentral.com/articles/10.1186/5s12916-023-02779-w
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Problem 4: Evaluation plan

Evaluate model calibration

Tabulate silent failures and confidently wrong predictions
how often? Any defining characteristics?



Problem 5: Overfitting is a common problem in the literature

The literature is rife with over-optimistic reported performance,
primarily due to a lack of statistical rigor.
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Inconsistent Partitioning and Unproductive Feature
Associations Yield Idealized Radiomic Models
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y




Problem 5: Overfitting is a common problem in the literature

The literature is rife with over-optimistic reported performance,
primarily due to a lack of statistical rigor.

1.0 1

0.8 1

Sensitivity

0.2 1

0.0 1

Gidwani

ot Al

o
o
A

o
IS
L

1 - Specificity

No Mistakes
Random chance
Mistake 1

Mistakes 1,
Mistakes 1,
Mistakes 1,
Mistakes 1,
Mistakes 1,

NNNNN
wWwwww
A A b

=

v

v,

Mistakes Added mistake ROC-AUC
None 0.556

1 Feature normalization in batch | 0.585

12 Feature selection in batch 0.672

123 Model selection using test set 0.647

1234 No external validation set 0.838
12345 Hyperparameter selection in 0.848

batch
123456 Report results on all data 1.0
Aos —e— LGG: LassoCV

LGG: MannWhitney
—e— HNSCC: LassoCV
—e— HNSCC: MannWhitney

0574 X 058
0563
0518

0.495
0.479

Inconsistent Consistent
Partitioning Partitioning




Solution 5: Best practices and statistical rigor throughout

Are
the
data
repres
entativ
e of
the
popula
tion of
interes
t?

Do the



Checklist before model deployment

v What is the reproducibility/ portability performance?

v What is repeatability (test-retest performance) of the model?
v Does the system have an “out of distribution” detector?

v How well is the model calibrated?

v How often does the model make grave errors? Is the model
confidently

wrong?
v Is the model explainable?
v Is the model biased? Fair?

v What is the continuous monitoring plan?



Thanks!!!

N
Yi-Fen Yen Ina Ly Dania Daye Katharina Hoebel Chris Bridge Syed Rakin Ahmed Advaith Veturi Dagoberto Pulido-
Assistant Professor Research Fellow MD/PhD Graduate Student Instructor Graduate Student Senior Data Scientist Arias

Research Analyst

Jay Patel Benjamin Bearce Praveer Singh Albert Kim i e
Graduate Student Senior Full Stack Web Post Doctorate Physician Investigator Chris Clark Mason Cleveland Satvik Tripathi Randy Lu
Developer Data Scientist Programmer Analyst Research Student Research Student

Thanks to funding from NIH, NSF, EU!



Deep Learning in Oncological Imaging

Segmentation Response
Assessment

Moving 30 Image (M)

Registration Field (¢

. \ = |
% | " .

xxxxxxxxxxx ) <

Registration Survival Drug delivery
Prediction
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Segmentation (delineation of object boundary) is often
used in oncology and radiation oncology

Quantifying tumor burden at a single time point and longitudinally

Contouring of tumors and organs at risk is key in radiation therapy planning

45



Tumor volume measurements agree with experts

—~

A 250000 . Rater 4
& . Rater5

~= 200000
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FLAIR Hyperintensity 100000

50000
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0 50000 100000 150000 200000 250000
Manual Volume (mm?3)

Manual Automatic

)

125000 - Rater4

Rater 5
100000

75000
50000

Enhancing Tumor
25000

Automatic Volume (mm

0

0 25000 50000 75000 100000 125000
Manual Volume (mm?3)

Manual Automatic Chang®, Beers*, Bai* et al., Neuro-Oncology (2019) ,,



Response Assessment: Is the patient responding to therapy?

Response Assessment in Neuro-Oncology (RANO)
Changes in bi-directional measurement of enhancing tumor

Wen et al., JCO (2010)
Reuter et al., ] Neurooncol (2014)

Sounds easy enough!

The step-by-step approach _» Done visually
1) Find the axial slice with largest tumor _, Depending on how you call
necrosis/blood, tumor may or may

area
2) Find the largest measurable* diameter, \ not be measurable
excluding necrosis and blood Help! The tumor is an odd shape
3) Find the largest measurable* Do
perpendicular diameter A O
4) Multiply diameters
5) Repeat for up to 5 lesions and sum

. Compounding of any variability in 1-4



Moderate agreement between clinicians

6000

4000

2000

Rater 6 RANO (mm?)

Why not just use volume?

Bi-directional measurements
are easier than volume
measurements (less time)!

1000 2000 3000 4000 5000 6000
Rater 4 RANO (mm?)

Slide: Ken
Change
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AutoRANO

* Use the axial slice with the
largest area (actually!)

* Because we use automatic
segmentations, can consistently
exclude blood and necrosis

* Diameters can exit segmentation

for up to 10% of its length (to
account for small holes)

Slide: Ken

Pkann—




Performance of AutoRANO

AutoRANO is more reflective
of tumor volume than manual
RANO
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< £ 6000
£ £
£ 4000 o
pu
2 @ 4000
< 2000 <
‘g % 2000 0 20000 40000 60000 80000 100000 120000
P 0 = Manual Volume (mm?)
5 Rater 4 o
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A “virtual” biopsy

No Mutation IDH Mutation
FLAIR T2 FLAIR 12

12x142x142

—
‘ v
Sigmoid Classifier
v \
Wild-Tvpe IDH Mutant

1.0 -
0.8 -
z |
&
\ 208
T1 Contrast T1 T1 Contrast g L
z 0.4
- =
Less aggressive growth - Fraining (AUC = 0.93)

Sharp margins —— validation (AUC = 0.95)
Homogenous signal intensity Testing (AUC = 0.95)

0.2 0.4 0.6 0.8 1.0
Less contrast enhancement False Positive Rate

=
==
[=0




Opportunistic Screening

Compare ions
CT Body Composition Analyzed Z-score

Review

Role of Machine Learning-Based CT Body Composition in Risk
Prediction and Prognostication: Current State and

Future Directions

Tarig Elhakim "2*0, Kelly Trinh 3, Arian Mansur *©, Christopher Bridge >* and Dania Daye 2**

nature medicine

Article https://doi.org/10.1038/s41591-023-02232-8

Body compositionand lung
cancer-associated cachexiain TRACERx
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Post-hoc methods (saliency maps)

Input T1 contrast MRI Guided-backprop

O

Grad-CAM

Reyes et al, Rad-Al
2020
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Problem: Shortcut learning

Shortcut learning in deep neural networks

Robert Geirhos©'24™ Jérn-Henrik Jacobsen®4, Claudio Michaelis ©'?#, Richard Zemel*?,
Wieland Brendel'®, Matthias Bethge'* and Felix A. Wichmann®'5

Article: Super Bowl 50

Paragraph: “Peython Manning became the first quarterback
ever to lead two different teams to multiple Super Bowls. He
is also the oldest quarlerback ever to play in a Super Bowl al
age 39. The past record was held by John Elway, who led the
Broncos 1o victory in Super Bowl XXXIIl at age 38 and is
currently Denver’s Executive Vice President of Football

O ions and General A Q Jeff Dean
had a jersey number 37 in Champ Bowl XXXIV.

Question: “What is the name of the quarlerback who was 38
in Super Bowl XXXIII?"

Original prediction: John Elway

Prediction under adversary: Jell Dean

Shane 2018 Zech 2018 Jia 2017

Task for DNN Caption image Recognize object Recognize pneumonia Answer question

Problem Describes green Hallucinates teapot if Fails on scans from Changes answer if irrelevant
hillside as grazing sheep certain patterns are present new hospitals information is added

Shortcut Uses background to Uses features Looks at hospital token, Only looks at last sentence and
recognize primary object unrecognizable to humans not lung ignores context

Fig. 1| Examples of shortcut learning. Deep neural networks often solve problems by taking shortcuts instead of learning the intended solution, leading to
a lack of generalization and unintuitive failures. This pattern can be observed in many real-world applications. Figure adapted with permission from ref. ™,
Al Weirdness (left); ref. 7, PLOS (third from left).



Problem 6: Deep learning models can be black-boxes

Black Box




Problem 6: Current explainability methods have limitations

Stop explaining black box machine learning
models for high stakes decisions and use
i nte rpreta b I e mOd e I S i nstead The Mythos of Model Interpretability

Cynthia Rudin

Zachary C. Lipton !

The false hope of current approaches to explainable artificial
intelligence in health care

Marzyeh Ghassemi, Luke Oakden-Rayner, Andrew L Beam



Solution: Create models that are inherently more explainable

Classificat Detection Segmenta
ion task: task: tion task:

~  Precancer
: (0.95)

3 3 o

Classificat
ion tasks
can be
easiest to
annotate
for (can
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Problem 6: Evaluation plan

Radiology:Artificial Inteligence

Assessing the Trustworthiness of Saliency Maps for
Localizing Abnormalities in Medical Imaging

Nishanth Arun, Blech* © Nathan Gaw, PhD* * Praveer Singh, PhD * Ken Chang, PhD
Mehak Aggarwal, MTech * Bryan Chen, MEng * Katharina Hoebel, MD * Sharut Gupta * Jay Patel, BS ©
Mishka Gidwani, BS  Julius Adebayo, MEng * Matthew D. Li, MD * Jayashree Kalpathy-Cramer, PhD

Are saliency maps good Do saliency maps vary with Are 53|'egczln‘\?ap5 Are sahc;ncYbrIna?ps
i izati ? reproducible?
localizers? model randomization repeatduie p
l InceptionV3 J \ InceptionV3 InceptionV3 ‘ IDenseNetlZl

FAIL

InceptionV3 Trained ‘ ‘ Randomized
58




Algorithmic bias in medical image analysis

Toward fairness in artificial intelligence for
medical image analysis: identification and
mitigation of potential biases in the roadmap from
data collection to model deployment

Karen Drukker®,>* Weijie Chen,” Judy Gichoya®,
Nicholas Gruszauskas®," Jayashree Kalpathy-Cramerc,
Sanmi Koyejo,* Kyle Myers©,” Rui C. S4© 2" Berkman Sahiner,”
Heather Whitney©,® Zi Zhang,' and Maryellen Giger®®

d

| Statistical bias

® Data collection .

-Data acquisition & ;
aggregation bias |
-Biased synthetic data

~~Institutional/systemic biaseee
/" -Activity bias

| /,,V-Presenfcl’rion biasee
> - Data preparation @
-Content production bias

-Population biasee

-Popularity/e @ -
patient-based bias

-Temporal biasesee —"
-Sampling/
representation/selection
bias
-Detection bias / \
-Amplification bias < U

s ‘2

“Members| O T e Exclusion biaseee
| =Historical b

-Behavioral

--Automation complacency/
-loss of situational awareness bias ®®

-Training data biasee . L S ... s ARGt Bias s e

_Cognitive biasees =~
AT Model deployment ®
-Deployment bias

-Concept drift/emergent bias

@ Model development | -User interaction bias

“nhexited/erorpropaganion bias =§'—Uncertc:infy bias/epistemic uncertainty s @

i
-Evaluation biaseee
-Funding/publication bias



Problem 7: Machine learning models may be biased

nature > news > article a natureresearch journal

nature o &

earch Login

]
! NEWS - 24 OCTOBER 2019 - UPDATE 26 OCTOBER 2019

Millions of black people affected by racial bias
inhealth-care algorithms

Study reveals rampant racism in decision-making software used by US hospitals —
and highlights ways to correct it.
ECONOMICS

Dissecting racial bias in an algorithm used to manage
the health of populations

Ziad Obermeyer~2*, Brian Powers?, Christine Vogeli®, Sendhil Mullainathan®*+
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Problem 7: Potential Harm in the use of Al

Al-Driven Dermatology Could |
Leave Dark-Skinned Patients Behind S I % %

Machine learning has the potential to save thousands of people from ol H% H

skin cancer each year—while putting others at greater risk.
85+

80+

Arterial Oxygen Saturation (%)

754

70

T T T T T T T T
89 90 91 92 93 94 95 96
No. of Paired Oxygen Saturation on Pulse Oximetry (%)

Measurements
White patients 92 178 231 314 438 556 653 817
Black patients 20 52 59 83 127 126 188 225

Racial Bias in Pulse Oximetry Measurement

https://www .theatlantic.com/health/archive/2018/08/machine-learning-dermatology-skin-color/567619/

https://www.nejm.org/doi/10.1056/NEJMc2029240



Problem 7: Models may be biased without us recognizing it!!!!

Learn to predict self-reported racial
identity in medical images

“models can be trained to predict race
from medical images with high
performance ...x-ray imaging ... AUC
range 0-91-0-99”

“Despite many attempts, we couldn't

work out what it learns or how it does it.

It didn’t seem to rely on obvious
confounders, nor did it rely on a limited
anatomical region or portion of the
image spectrum.”

ARTICLES | VOLUME 4, ISSUE 6, E406-E414, JUNE 01,2022

Al recognition of patient race in medical imaging:
a modelling study

Judy Wawira Gichoya, MD 2 [ - Imon Banerjee, PhD - Ananth Reddy Bhimireddy, MS
John L Burns, MS . Leo Anthony Celi, MD - Li-Ching Chen, BS - etal. Show all authors

Published: May 11,2022 . DOI: https://doi.org/10.1016/S2589-7500(22)00063-2

") Check for updates

HPF 100

LPF 100

https://laurenoakdenrayner.com/2021/08/02/ai-has-the-worst-
superpower-medical-racism/



https://laurenoakdenrayner.com/2021/08/02/ai-has-the-worst-superpower-medical-racism/
https://laurenoakdenrayner.com/2021/08/02/ai-has-the-worst-superpower-medical-racism/

Problem 7: Al can be biased in ways that are hard to identify

b PR Views 1,589 Citations 1 Altmetric 212

Figure 3 Histograms of the Mean Number

Original Investigation ot
May 4, 2023 . B
Association of Biomarker-Based Artificial Y

Intelligence With Risk of Racial Bias in Retinal W
Images S —

«
Aaron S. Coyner, PhD'; Praveer Singh, PhD?3; James M. Brown, PhD?; et al H

» Author Affiliations o s000 16000 15000 20000 2000
Wonzer pacs, No

IMAGE TYPE AUC-PR  AUC-ROC AUC-PR AUC-ROC |
(imagelevel)  (imagelevel)  (subjectlevel)  (subject level) “I

o= 15000 00 Tascm 10000
Noriero pils, Ho.

JAMA Ophthalmol. 2023;141(6):543-552. doi:10.1001/jamaophthalmol.2023.1310
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Problem 7: Many datasets used to create Al lack diversity

September 22/29, 2020

Geographic Distribution of US
Cohorts Used to Train Deep
Learning Algorithms

Amit Kaushal, MD, PhD'; Russ Altman, MD, PhD'; Curt Langlotz, MD, PhD?

“In clinical applications of deep learning
across multiple disciplines, algorithms
trained on US patient data were
disproportionately trained on cohorts from
California, Massachusetts, and New York,
with little to no representation from the
remaining 47 states.”



What is Fairness?

e [Fuairness is judged against set of ethical and
legal principles, which can change over time
and vary between groups, cultures, countries

e Fairness usually considered on an individual
or group level

o Individual fairness - similar individuals
treated similarly

o Group fairness - different groups treated
equally

e To quantify unfairness, several mathematical
definitions of fairness exist



Achieving Fairness can be challenging

White patients (ground truth)

m fatty
[ scattered
" heterogeneous
B dense

800 -

200 -

0.0 0.2 0.4 . 0.6 0.8
Breast size

1.0

Black or african american patients (ground truth)

m fatty

[ scattered
heterogeneous

B dense

300 -

250 -
200 -
150 -
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Breast size



Solution 7: Increase diversity of datasets, measure in all

opulations

MIDRC

Unknown or no information
Other

Asian

/ Native Hawaiian/Pacific Islander

Black or African American
White

American Indian or Alaska Native

Diversity in the MIDRC dataset (May 2021).

https://www.midrc.org/diversity

PXS Score

PXS Score

5 7]

v

Grading labels vs PXS score - all raters consensus, BMI

BMI
mmm Not Obese
Em Obese
® Not Obese
® Ovese

&

8

v

L

o

Severe

Negative Mild Moderate
RICORD 1c label
Grading labels vs PXS score - all raters consensus, Site
Site
- A
mm C
== D
e C
e A
e D
~
. N H L] )
A
- [] “
.
4 :
Mild

Negétive

Moderate Severe
RICORD 1c label
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Problem 7: Evaluation plan

Evaluation model performance in sub-populations
Evaluate failure cases to better understand sub-populations to study

Study if “shortcut learning” is occuring



Does Al have super-human capabilities?

Article \ Published: 19 February 2018
Prediction of cardiovascular risk factors from retinal
fundus photographs via deep learning

Ryan Poplin, Avinash V. Varadarajan, Katy Blumer, Yun Liu, Michael V. McConnell, Greg S. Corrado, Lily

Peng & & Dale R. Webster

Nature Biomedical Engineering 2, 158-164 (2018) | Cite this article

22k Accesses | 653 Citations | 2388 Altmetric | Metrics

Retinal microvasculature dysfunction is ®
associated with Alzheimer’s disease and -
mild cognitive impairment

Jacqueline Chua'2?, Qinglan Hu'?, Mengyuan Ke'?, Bingyao Tan'** Jimmy Hong', Xinwen Yao'*#,

Saima Hilal*®”, Narayanaswamy Venketasubramanian®®, Gerhard Garhafer®, Carol Y. Cheung'®, Tien Yin Wong',

Christopher Li-Hsian Chen® and Leopold Schmetterer #3411

Predicting sex from retinal fundus
photographs using automated
deep learning

Edward Korot?, Nikolas Pontikos?, Xiaoxuan Liu'?3, Siegfried K. Wagner?, Livia Faes'*,
Josef Huemer"*, Konstantinos Balaskas’, Alastair K. Denniston'23$, Anthony Khawaja'"’' &

Pearse A. Keane'™”

Predicting risk of breast cancer at one to five years
from the mammogram.

ORIGINAL REPORTS | Breast Cancer

Multi-Institutional Validation of a Mammography-Based
Breast Cancer Risk Model

") Check for updates

Adam Yala "', MEng'-? . peter G. Mikhael &, BS" Eredrik Strand ', MD, PhD34; Gigin Lin
, MD, PhD5; siddharth Satuluru, BS®; Thomas Kim, MS; ...



Superhuman + risk of bias + not transparent — need for
vigilance?

H H H H H H . Not Color Blind:
AI recog':"tlon Of patlent racein mEdlcaI Imag Ing' Al Predicts Racial Identity from Black and White Retinal Vessel Segmentations
a modelling study

Aaron S Coyner PhD'?*, Praveer Singh PhD**? James M Brown, PhD*,
1 5 M ; 6
Judy Wawira Gichoya, Imon Banerjee, Ananth Reddy Bhimireddy, John L Burns, Leo Anthony Celi, Li-Ching Chen, Ramon Correa, Natalie Dulleru Susan Ostmo MS', RV Paul Chan J\:lhD: Michael F Chiang MD, Mﬁ’ >
Marzyeh Ghassemi, Shih-Cheng Huang, Po-Chih Kuo, Matthew P Lungren, Lyle | Palmer, Brandon | Price, Saptarshi Purkayastha, Ayis T Pyrros, Jayashree Kalpathy-Cramer PhD**?, J Peter Campbell MD, MPH"
Lauren Oakden-Rayner, Chima Okechukwu, Laleh Seyyed-Kalantari, Hari Trivedi, Ryan Wang, Zachary Zaiman, Haoran Zhang

Race Classification ROC-AUC as Pixel Resolution Increases

=S IR Surprisingly:

44 Grayscale Retinal Vessel Maps Contain Information Associated with Self-Reported Race

o7 4 BLACK WHITE

50 160 250 360

15¢ 200
Resolution (pixels)

Race Classification ROC-AUC as Pixel Resolution Increases

RETINAL VESSEL MAP

= Asian

0.90| —o white

AUC-PR AUC-ROC AUC-PR AUC-ROC

i w Gimage level) (image level) (subject level) (subject level)

il & Grayscale RVM 0.938 0.959 0.995 0.995

f

Wl Grayscale Retinal Vessel Maps Are
)/ ] - - - - - Associated with Self-Reported Race

T T Implications for Artificial Intelligence Models

Aaron S. Coyner, PhD @
' OHSU

30 0 50
Resolution (pixels)



Just hear me out...



Building a mechanism-based model

Exponenil b N(1) = N, exp(kx)

-

(5}

N

7

c
o

ke

=

Q
O

a

N(t) = # of tumor cells at time t
Parameters = | N, = initial # of tumor cells
k = proliferation rate




Carrying capacity

Building a mechanism-based model

Exponenil b N(1) = N, exp(kx)

Q
N
n
c
o
=
i
>
Qo
]
o

Logistic | — N(t) — HNO
Growth N,+(0—-N,)exp(—k-1)

N(t) = # of tumor cells at time t
N, = initial # of tumor cells

k = proliferation rate

0 = carrying capacity

Parameters -

—> Now need to account for spatial variations in tumor growth

" IN N N(t) = # of tumor cells at time t
Reaction- _ k = proliferation rate
diffusion 9t =Ve+(DVN)+ kN(l - Ej 6= carrying capacity
equation D = tumor cell diffusion




Building a mechanism-based model

- And if we include the effects of therapy:

(Movement\ 4 Proliferation ([ Treatment A

ON(x,?) N(x,1) rug,n
Y =V (DVN(x,0))|Hk(x)N(x,1) (1— 7 —N(x,t) ) ay eXP(ant)CZ"ssue (x,7)
\_ 2N /L n J

So, what do we do with this model?




Weather Weather
model forecast

Just as satellites provide the data for weather forecasting,
quantitative imaging data can provide the data for tumor forecasting.

Tumor Tumor
forecast




Applying a mechanism-based model

/Movement\ 4 Proliferation ([ Treatment A

5N(x, t) N(X,t) rug,n
== (DVNGe,0) k(NG ) (1— 2 )N ) an exp(Bad Chpras 1.
\__ VAN L n /

Spatially-resolved
drug Kinetics

Overall
cellularity
Time

Predict spatio-
temporal cellularity



Mechanism-based models enable patient specific predictions

e
W

Observed
Predicted

counts change

el
(93

CCC=0.97 : + CCC =0.96
(n =139) 3-5;/ (n =139)

’ -6 -5 -4 -3 -2 -1 0 -3 2 -1 0

easured cell counts change *1¢’ Measured volume change  *1¢'

Predicted volume change

)
(@]
§e]
[¢B]
+—
2
-
D
S
o

AUC =0.89
)

—> We are getting pretty good at predicting the spatial and temporal
development of these breast tumors in the neoadjuvant setting...

Wu, et al. Cancer Research, 2022



... with similar results for prostate cancer...

Patient 1

DSC =0.82

CCC =0.69

Patient 2

DSC =0.82 CCC = 0.69

Tumor volume

@ Calibration
@ Forecasting

Data (cc)

Guillermo Lorenzo, et al.




... and for brain cancer

=
~
=
wn
o
o
=
=
=
@)
=
Lo

Fore_casted Observed

w
w

w

N
o

N

_‘
&)

-

0.5

o

~~
o
—
(@)
—
X
N
b
c
-]
(@)
(@]
©
(]
I
i
(@)
+—
©
2
O
©
(@)

o

1 1.5 2 . 3

10
S R Measured total cell count (x10%°) 9




| know what you are thinking




“Why did you drag me through all that math...

... 1sn’t AI/Big Data just going to figure 1t all out?”




Al & Big Data... because who needs science?

« Study goal: Establish radiomics prediction models based on MRI for
predicting recurrence of TNBC patients (n = 147) after NAT

k 3 : Radiomics Model Models Selection and
Segmentation Image Pre-processing Features Extraction : :
Developing Evaluation

Original Images Data Normalization
Filters None Models Selection

First-order Min-max
Statistical Features Z-Score The best Radiomics
LoG Filtering \/ Mean model of the three types

Dimension Reduction
Model1 ( pre-NAC MR)

Wavelet

Transformation
Shape Features Model2 ( post-NAC MR)
: Model3 ( pre-&post-
NAC MR

Type of images

Models Evaluation
Original Images

Texture Features

LoG Images

Wavelet Images Decision Tree
RF
Adaboost
XGBoost

- 102 radiomics features were extracted and three models built based on:

1) pre-NAT MRI features e 0.81°
2) post-NAT MRI features .....0.80
3) pre- and post-NAT MRI features ... 0.93 |

Area under
ROC curve

Ma et al. Eur J Radiol. 2022;146:110095
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Problem solved, right?




Well. ..




Let’s contrast this with a mechanism-based approach




Digital twin for predicting/optimizing treatment response

amm 4 Physical state, S; e g Observational data, O Control inputs, U,

Anatomy & morphology, Anatomy, perfusion, permeability, MRI studies
mechanical & physiological state cell density, metabolism Biopsies

Optimize treatment

e 4 Digital state, D; e g Quantities of interest, Q;

Domain: FE mesh, boundary conditions

Parameters: tumor dynamics, mechanics tumor shae. cell densit _ N
Inputs: treatment regimens Pe, y treatment efficacy & toxicity

—p Rewards, R,

Distribution of therapies, Outcomes; e.g.,

outcome

Reglmen B(3 dose)
" ‘ ﬁ ‘b ’y

Reglmen A (_l dose)

0 /A i @
&\ ' & S 3 & ;:’;3

time

B Physical asset
B Digital asset

Wu, Lorenzo, Hormuth, Lima, et al. Biophysics Rev, 2022.



Digital twin for predicting/optimizing treatment response

Want to not just make predictions; want to optimize outcomes

Single injection Multiple injections (same total dose)

- This formalism allows you to identify treatment protocols that




Digital twin for predicting/optimizing treatment response

Patient with res1dual disease after NAT

x10° i4acti2T |
| @ original
|| © SOC options

=
Q
k=
=
5
=
S
£
2
S
R
[

-— 80

= 0 8
0 75 g 60 A
Taxol duration (days) PJC 8 (&9

You cannot do this with Al/Big Data only approach

Must have a mechanism-based model
Chengyue Wu, et al. SABCS 2023.
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Let’s take a deeper dive into deep learning to see why...




Quick peek into the guts of DL

* Building block of DL is the “perceptron’; it takes some input data
and maps it to output:

Wy

oS O— 10
W sum non-linearity output
(activation function)

weights

Inputs




Quick peek into the guts of DL
 So this is what you do with this thing:

wd W@ predicted  true

input
output  output

- And you try to minimize something like the following by getting the best set of weights:

1 n
JW) = Eé()’i _‘f(xi' W))lz

|
Predicted = ¥,

- We need LOTS of data to “train” the DL model; i.e., to calibrate the w’s



But that training set does not exist for a host of problems...




In fact, we have already thrown AI/Big Data at cancer...







A cautionary tale

- From the IBM website:

“Watson for Oncology combines leading oncologists’ deep expertise in cancer care
with the speed of IBM Watson to help clinicians as they consider individualized
cancer treatments for their patients.”
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“IBM’s Watson supercomputer recommended ‘unsafe and incorrect’ cancer
treatments, internal documents show”




A cautionary tale

- From the IBM website:

“Watson for Oncology combines leading oncologists’ deep expertise in cancer care
with the speed of IBM Watson to help clinicians as they consider individualized
cancer treatments for their patients.”

- From STAT in 2017;

“IBM’s Watson supercomputer recommended ‘unsafe and incorrect’ cancer
treatments, internal documents show”

- From FORBES in 2017/2018:

“IBM announced that its Watson Health chief had stepped down" and “its once-
hyped A.I. business has been scaled back with layofts”




Linking mechanism-based and data-based modeling

Methods

Mechanism-based modeling

ol lol loll- 11l

MRI MRI MRI Pathology

Calibration Predict response

> Model parameters

JNEDNINEE

MRI MRI

Deep learning l

Train network —__|

l

Time -@*
MRI
[}

Pathology
J

Input Prediction: parameters & response

Casey Stowers, et al. SABCS 2023.
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A Plea

Statistical inference—though, enormously powerful—relies on properties
of large populations that obscure conditions specific to the individual

High-consequence decisions (e.g., those in oncology) must be based on
more than just data analytics

—> These decisions must incorporate biophysical processes that can be
calibrated with patient-specific data to make patient-specific predictions

If you want to design something that is useful for an individual human
being, you must rely on that human being’s unique characteristics

So, build your neural networks if you must...

... but please don’t forget about F = ma
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Thank you very much
for your time and attention.

@UTCompOnco

CCO.0den.utexas.edu

ley@utexas.edu
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