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Cervical Cancer Screening (collaboration with NCI)

Cervical cancer is a leading cause of cancer morbidity and mortality 
worldwide

Persistent infections with high-risk human papilloma virus (HPV) 
strains remain the strongest risk factor for subsequent neoplastic 
growth 

Screening of the cervix by visual inspection after application (VIA) of 
acetic acid

ML algorithm for analysis of images of the cervix, in conjunction with 
HPV testing can be used in global screening programs
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1. Cervical Cancer Screening: Background

Sources: Arbyn, Marc, et al. The Lancet Global Health 8.2 (2020): e191-e203.
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PAVE risk stratification

Perkins et 
al, 2023
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It is becoming really easy to create an AI algorithm today!

AI Algorithm

AutoML

Annotations

Data

AI algorithm
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Cervical cancer screening using deep learning for AVE 

“Automated visual evaluation of enrollment 
cervigrams identified cumulative 
precancer/cancer cases with … accuracy 0.91”
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Follow up publication in cervical cancer highlighting some of the 
challenges
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Lessons learned

1) Specify rigorously what the algorithm is designed to identify and what 
the test is intended to measure, e.g., screening, diagnostic, or 
prognostic. 

2) Design the AI algorithm to minimize the most clinically important 
errors. 

3) Evaluate AI algorithms like any other test, using clinical 
epidemiologic criteria.

4) Link the AI algorithm results to clinical risk estimation.

5) Generate risk-based guidelines for clinical use that match local 
resources and priorities.



Challenges in “real life” AI deployment

• Generalizability– models are brittle and do not generalize across 
scanners, populations, disease presentation

• Model predictions may not be repeatable!
• Gray zone” -many diseases lie on a spectrum, ratings are 

binary/ordinal
• Calibration- commonly used approaches for binary models can lead 

to poorly calibrated models 

• Silent failures – models may fail without indication (”confidently 
wrong”)

• Overfitting – reported model performance can be over-optimistic
• Explainability
• Models can be biased (in hard to detect ways)



Problem 1: “Brittleness” of machine learning models

Deep learning models do not generalize well

 Only 6% of published AI studies have external validation (Kim 
et al., KJR, 2019)

Data heterogeneity can lead to poor model performance on external 
datasets. 



https://ericwu09.github.io/medical-ai-evaluation/

Few FDA approved AI devices have been evaluated externally



Images acquired on different devices can be quite different

Xue et al, 2021 doi:10.1109/ cbms52027.2021.00085
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“Portability challenges” in cervical cancer 

Cervigram V1 
algorithm

Good case-
control 

discrimination 
on cervigram 

V1 images

Poor case-
control 

discrimination 
on cervigram 

V1 images
v

Cervigram V2 
algorithm

Good case-
control 

discrimination 
on cervigram V2 

images

Poor case-
control 

discrimination 
on cervigram 

V1 images
v

Cervigram 
V1 

Cervigram 
V2

Good case-
control 

discrimination 
on both 

cervigram V1 
& V2

Combined model

Training set

Cervigram V1 (NHS) 0.90 0.53

Cervigram V2 (ALTS) 0.54 0.86

Cervigram V1+V2 0.85 0.87

Cervigram V1 (NHS) Cervigram V2 (ALTS)

Test set

A
U

C

Slide: KananDesai/Mark Schiffman



Solution 1:  WIP! 

Increase data diversity

Multi-institutional databases

Out of distribution detection

Novel AI methods to improve generalization 

Federated learning

Self-supervised learning



Problem 1:  Evaluation plan 

Curate multi-institutional or multi-scanner datasets

Consider ways in which “out-of-distribution” input may occur

•  Different scanners

• Poor quality

• Wrong anatomy/modality/view

• Different demographics (e.g. pediatric)

Evaluate performance on unseen datasets

Continuous monitoring



Problem 2: DL Model predictions are not repeatable!

Little published literature on model repeatability/reproducibility

Many models are not repeatable when tested!.

A 
replicat
e set of 
images 
yield 
differen
t results 
(lack of 
repeata
bility)

Lemay et 
al, NPJ 

Desai K et al. IJC 2021; 
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Challenge: A replicate set of images from a woman during same examination 

with same device, yielded different results (lack of repeatability)

Desai K et al. IJC 2021; 

Problem 1: Test-retest repeatability can be an issue

This 
issue 
was 
seen 



• https://pair.withgoogle.com/explorables/uncertainty-ood/



26

Solution 1: Monte Carlo approaches may improve repeatability

Knee osteoarthritis 
(xray)

Cervical cancer (photos)

Lemay et 
al, NPJ 



Problem 2: Evaluation plan

Curate datasets to evaluate repeatability/reproducibility

• If ethical, acquire test-retest datasets of the same patients

• If not, generate datasets with slight variations (e.g. flip image, 
rotate image slightly)
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Problem 3: Real World is a Often a Continuous Spectrum 

Campbell et al, Ophthalmology 2016;123:2338-44.

Li et al, Academic Radiology, 2021 



Problem 3 Diseases lie on a spectrum

Not recognizing equivocal changes can lead to extreme mis-classifications and grave errors

Slide: 
Desai et 
al,  Int. J. 



Problem 3: DL model may have extreme 
misclassifications/confidently wrong

Challenge: Distinguishing HPV related equivocal changes from precancer is challenging 

leading to extreme misclassification by binary AVE classifier

Classification

Normal Precancer+

Ground 
Truth

Normal 93.7% 6.3%

Precancer+ 33.6% 66.4%



Solution 3: Introduce a “gray zone”

Solution: Adding equivocal class in training a three-class ordinal classifier reduced 
serious misclassification 

Classification

Normal Equivoca
l

Precancer+

Ground 
Truth

Normal 83.7% 13.4% 2.9%

Equivocal 35.8% 30.2% 34%

Precancer
+

8.6% 11.4% 80%



Solution 3: Generate continuous output variables instead 
of binary values



Problem 3: Evaluation plan

Generate datasets with multiple raters 

Generate datasets along disease spectrum

Evaluate (binary) models on nuanced cases
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Problem 4: Models may fail silently 

Deep 
learning 
approac
hes 
(typicall
y) do not 
provide 
measure
s of 
[segmen
tation] 
uncertai
nty

Example 
histogra
m of 
dice 
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Solution 4: Bayesian DL approaches (Monte Carlo) may 
provide estimates of voxel and patient level uncertainty

Such 
approac
hes 
may 
identify 
cases 
where 
human 
oversig
ht is 
necessa
ry



Solution 4: Methods such as MC may improve calibration
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Validation

https://bmcmedicine.biomedcentral.com/articles/10.1186/s12916-023-02779-w

Reason 1: patient populations vary
Reason 2: measurements of predictors 
or outcomes vary
Reason 3: populations and 
measurements change over time



Problem 4: Evaluation plan

Evaluate model calibration

Tabulate silent failures and confidently wrong predictions

 how often? Any defining characteristics?



Problem 5: Overfitting is a common problem in the literature

The literature is rife with over-optimistic reported performance, 
primarily due to a lack of statistical rigor.

Gidwani 
et al, 
Radiolog



Problem 5: Overfitting is a common problem in the literature

The literature is rife with over-optimistic reported performance, 
primarily due to a lack of statistical rigor.

Gidwani 
et al, 
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Solution 5: Best practices and statistical rigor throughout

Are 
the 
data 
repres
entativ
e of 
the 
popula
tion of 
interes
t?

Do the 
data 
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Checklist before model deployment

✔ What is the reproducibility/ portability performance?

✔ What is repeatability (test-retest performance) of the model? 

✔ Does the system have an “out of distribution” detector?

✔ How well is the model calibrated?

✔ How often does the model make grave errors? Is the model 
confidently 

 wrong?

✔ Is the model explainable?

✔ Is the model biased? Fair? 

✔ What is the continuous monitoring plan?



Thanks!!! 

Thanks  to funding from NIH, NSF, EU!
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Deep Learning in Oncological Imaging

Segmentation Response 
Assessment

Radiogenomics

Registration Survival 
Prediction

Drug delivery
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Segmentation (delineation of object boundary) is often 
used in oncology and radiation oncology

Quantifying tumor burden at a single time point and longitudinally

Contouring of tumors and organs at risk is key in radiation therapy planning



Tumor volume measurements agree with experts

AutomaticManual

AutomaticManual

ICC = .965

ICC = .924

FLAIR Hyperintensity

Enhancing Tumor

46Chang*, Beers*, Bai* et al., Neuro-Oncology (2019)



Response Assessment in Neuro-Oncology (RANO)
Changes in bi-directional measurement of enhancing tumor

The step-by-step approach

1) Find the axial slice with largest tumor 
area

2) Find the largest measurable* diameter, 
excluding necrosis and blood

3) Find the largest measurable* 
perpendicular diameter

4) Multiply diameters

5) Repeat for up to 5 lesions and sum

Sounds easy enough!

Done visually

Depending on how you call 
necrosis/blood, tumor may or may 
not be measurable

Help! The tumor is an odd shape

Compounding of any variability in 1-4

Response Assessment: Is the patient responding to therapy?

Wen et al., JCO (2010)
Reuter et al., J Neurooncol (2014)

47
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Moderate agreement between clinicians

ICC = 
.704

Why not just use volume?

Bi-directional measurements 
are easier than volume 
measurements (less time)!

Slide: Ken 
Chang



AutoRANO

• Use the axial slice with the 
largest area (actually!)

• Because we use automatic 
segmentations, can consistently 
exclude blood and necrosis

• Diameters can exit segmentation 
for up to 10% of its length (to 
account for small holes)

49

Slide: Ken 
Chang



Performance of AutoRANO

Agreement with experts for 
longitudinal changes

ICC = .850

Highly Repeatable

ICC = .977

AutoRANO is more reflective 
of tumor volume than manual 
RANO

ρ = .787

ρ = .940

50Chang*, Beers*, Bai* et al., Neuro-Oncology (2019)



A “virtual” biopsy

51

Chang*, Bai* et al., Clinical Cancer Research (2019)

+ Age
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Opportunistic Screening
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Post-hoc methods (saliency maps)

Reyes et al, Rad-AI 
2020
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Problem: Shortcut learning



Problem 6: Deep learning models can be black-boxes

input output

Black Box

.. .
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Problem 6:  Current explainability methods have limitations
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Solution: Create models that are inherently more explainable

Classificat
ion task: 

Detection 
task: 

Segmenta
tion task: 

Precancer 
(0.95)

Classificat
ion tasks 
can be 
easiest to 
annotate 
for (can 
use other 
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Problem 6: Evaluation plan



Algorithmic bias in medical image analysis
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Problem 7: Machine learning models may be biased
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Problem 7: Potential Harm in the use of AI

https://www.theatlantic.com/health/archive/2018/08/machine-learning-dermatology-skin-color/567619/

https://www.nejm.org/doi/10.1056/NEJMc2029240



Problem 7:  Models may be biased without us recognizing it!!!!

● Learn to predict self-reported racial 
identity in medical images

● “models can be trained to predict race 
from medical images with high 
performance …x-ray imaging …AUC 
range 0·91–0·99”

● “Despite many attempts, we couldn't 
work out what it learns or how it does it. 
It didn’t seem to rely on obvious 
confounders, nor did it rely on a limited 
anatomical region or portion of the 
image spectrum.” 

https://laurenoakdenrayner.com/2021/08/02/ai-has-the-worst-
superpower-medical-racism/

https://laurenoakdenrayner.com/2021/08/02/ai-has-the-worst-superpower-medical-racism/
https://laurenoakdenrayner.com/2021/08/02/ai-has-the-worst-superpower-medical-racism/
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Problem 7: AI can be biased in ways that are hard to identify

https://jamanetwork.com/journals/jamaophthalmology/article-abstract/2804442
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Problem 7: Many datasets used to create AI lack diversity

“In clinical applications of deep learning 

across multiple disciplines, algorithms 

trained on US patient data were 

disproportionately trained on cohorts from 

California, Massachusetts, and New York, 

with little to no representation from the 
remaining 47 states.”



What is Fairness?

● Fairness is judged against set of ethical and 
legal principles, which can change over time 
and vary between groups, cultures, countries

● Fairness usually considered on an individual 
or group level

○ Individual fairness - similar individuals 
treated similarly

○ Group fairness - different groups treated 
equally

● To quantify unfairness, several mathematical 
definitions of fairness exist



Achieving Fairness can be challenging
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Solution 7: Increase diversity of datasets, measure in all 
populations

https://www.midrc.org/diversity



Problem 7: Evaluation plan

Evaluation model performance in sub-populations

Evaluate failure cases to better understand sub-populations to study

Study if “shortcut learning” is occuring



Does AI have super-human capabilities?

Predicting risk of breast cancer at one to five years 
from the mammogram.



Superhuman + risk of bias + not transparent –> need for 
vigilance?



Tom Yankeelov

The University of Texas at Austin

2 October 2023

Just hear me out…

1
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Building a mechanism-based model

Parameters

N(t) = # of tumor cells at time t

N0 = initial # of tumor cells

k = proliferation rate

Exponential

Growth

dN

dt
= kN Þ N(t) = N

0
exp(k ×t)
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Building a mechanism-based model

Exponential

Growth

Logistic 

Growth

N(t) = # of tumor cells at time t

N0 = initial # of tumor cells

k = proliferation rate

 = carrying capacity

Parameters

→ Now need to account for spatial variations in tumor growth

Reaction-

diffusion 

equation

N(t) = # of tumor cells at time t

k = proliferation rate 

 = carrying capacity

D = tumor cell diffusion

dN

dt
= kN Þ N(t) = N

0
exp(k ×t)
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Building a mechanism-based model

Jarrett et al., Nature Protocols, 2021

TreatmentProliferationMovement
∂N x,t

∂t
=∇⋅ (D∇N(x,t)) +k x N x,t 1−

N x,t

θ
−N(x,t)෍

n

αn exp βnt Ctissue
drug,n

(x,t)

So, what do we do with this model?

→ And if we include the effects of therapy:
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Just as satellites provide the data for weather forecasting,

quantitative imaging data can provide the data for tumor forecasting.

Weather 

model

Weather 

forecast

Yankeelov, Quaranta, Evans, Rericha.  Cancer Research, 2015

Tumor

model

Tumor 

forecast



Spatially-resolved

 drug kinetics

Applying a mechanism-based model

TreatmentProliferationMovement
∂N x,t

∂t
=∇⋅ (D∇N(x,t)) +k x N x,t 1−

N x,t

θ
−N(x,t)෍

n

αn exp βnt Ctissue
drug,n

(x,t)

Measure spatio-

temporal cellularity

Time

Overall 

cellularity

Predict spatio-

temporal cellularity

6
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Wu, et al. Cancer Research, 2022

→ We are getting pretty good at predicting the spatial and temporal 

development of these breast tumors in the neoadjuvant setting…

AUC = 0.89

(n = 50)

Observed
Predicted

CCC = 0.97

(n = 139)

P
re

d
ic

te
d

 c
el

l 
co

u
n

ts
 c

h
an

g
e

Measured cell counts change

CCC = 0.96

(n = 139)

Measured volume change

P
re

d
ic

te
d

 v
o

lu
m

e 
ch

an
g

e

Mechanism-based models enable patient specific predictions
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… with similar results for prostate cancer…

Guillermo Lorenzo, et al.

P
at

ie
n
t 

1
P

at
ie

n
t 

2
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… and for brain cancer

David Hormuth, et al.
Measured total cell count (×1010)

M
o
d
el

le
d
 t

o
ta

l 
ce

ll
 c

o
u
n
t 

(×
1
0

1
0
)
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I know what you are thinking



11

“Why did you drag me through all that math…

… isn’t AI/Big Data just going to figure it all out?”
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Ma et al. Eur J Radiol. 2022;146:110095

• Study goal: Establish radiomics prediction models based on MRI for 

predicting recurrence of TNBC patients (n = 147) after NAT

→ 102 radiomics features were extracted and three models built based on:

1) pre-NAT MRI features 

2) post-NAT MRI features 

3) pre- and post-NAT MRI features

….. 0.81

….. 0.80

….. 0.93

Area under 

ROC curve

AI & Big Data… because who needs science?
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Problem solved, right?
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Well…
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Let’s contrast this with a mechanism-based approach
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Wu, Lorenzo, Hormuth, Lima, et al. Biophysics Rev, 2022.

Digital twin for predicting/optimizing treatment response

Observational data, Oi

Anatomy, perfusion, permeability,

cell density, metabolism

Control inputs, Ui

MRI studies

Biopsies

Optimize treatment

Digital state, Di

Domain: FE mesh, boundary conditions

Parameters: tumor dynamics, mechanics

Inputs: treatment regimens

[d
ru

g
] 

Quantities of interest, Qi

Distribution of therapies, 

tumor shape, cell density

Si Oi

Di Qi Ri

UiPhysical state Observational data

Quantities of interest Rewards

Control inputs

Digital state

Breast FE mesh + BCs
Parameters: tumor dynamics, mechanics

Inputs: neoadjuvant treatment regimens

T1W-MRI à anatomy
DCE-MRI à PK à perfusion, permeability

DW-MRI à ADC map à Tumor cell density

Spatiotemporal distribution of therapies 
Breast tumor shape, volume, cell density field

Validation: 
Breast tumor shape, volume, cell density

Treatment outcome: 
Treatment efficacy: tumor volume, cell density
Side effect toxicity: off-target drug concentration

Perform MR imaging study
Perform biopsy

Personally optimize treatment

Breast tissues: anatomy, mechanical state
Breast tumor(s): morphology, behavior

regimen (A)

regimen (B)

[d
ru

g
] 

(�
g

/m
l)

regimen (C)
Regimen A (1 dose)

Regimen B (3 dose)

time scheduledose

Optimal regimen

Standard regimen

o
u

tc
o

m
e

Rewards, Ri

Si Oi

Di Qi Ri

UiPhysical state Observational data

Quantities of interest Rewards

Control inputs

Digital state

Breast FE mesh + BCs
Parameters: tumor dynamics, mechanics

Inputs: neoadjuvant treatment regimens

T1W-MRI à anatomy
DCE-MRI à PK à perfusion, permeability

DW-MRI à ADC map à Tumor cell density

Spatiotemporal distribution of therapies 
Breast tumor shape, volume, cell density field

Validation: 
Breast tumor shape, volume, cell density

Treatment outcome: 
Treatment efficacy: tumor volume, cell density
Side effect toxicity: off-target drug concentration

Perform MR imaging study
Perform biopsy

Personally optimize treatment

Breast tissues: anatomy, mechanical state
Breast tumor(s): morphology, behavior

regimen (A)

regimen (B)

[d
ru

g
] 

(�
g

/m
l)

regimen (C)
Regimen A (1 dose)

Regimen B (3 dose)

time scheduledose

Optimal regimen

Standard regimen

o
u

tc
o

m
e

Outcomes; e.g.,

treatment efficacy & toxicity

Anatomy & morphology, 

mechanical & physiological state

Physical state, Si

Digital asset

Physical asset
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Want to not just make predictions; want to optimize outcomes

Chengyue Wu, et al. IEEE-TMI, 2020; IEEE TBME, 2022.

Multiple injections (same total dose)Single injection

Digital twin for predicting/optimizing treatment response

→ This formalism allows you to identify treatment protocols that 

balance treatment efficacy and safety
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Must have a mechanism-based model

Chengyue Wu, et al. SABCS 2023.

Patient with residual disease after NAT

Digital twin for predicting/optimizing treatment response

You cannot do this with AI/Big Data only approach
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Let’s take a deeper dive into deep learning to see why…
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x1

x2

x3

xm

Inputs

• Building block of DL is the “perceptron”; it takes some input data 

and maps it to output:

S

w1

w2

w3

wm

weights

sum non-linearity 

(activation function)

𝑦

output

Alexander Amini; https://www.youtube.com/watch?v=7sB052Pz0sQ&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI

Quick peek into the guts of DL
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Quick peek into the guts of DL

Alexander Amini; https://www.youtube.com/watch?v=7sB052Pz0sQ&list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI

W(1)

z3

z1

z2 y1

W(2)

→ And you try to minimize something like the following by getting the best set of weights:

y1

predicted

output

y1

true

output

• So this is what you do with this thing:

→ We need LOTS of data to “train” the DL model; i.e., to calibrate the w’s

→ The “deeper” the neural network, the more data you need to train the network

x1

x2

x =

input

Predicted = y1

𝐽 𝑊 =
1

𝑛
෍

𝑖=1

𝑛

𝑦𝑖 − 𝑓 𝑥𝑖 𝑤
2
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But that training set does not exist for a host of problems…
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In fact, we have already thrown AI/Big Data at cancer…
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Brad
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A cautionary tale

→ From the IBM website:

“Watson for Oncology combines leading oncologists’ deep expertise in cancer care 

with the speed of IBM Watson to help clinicians as they consider individualized 

cancer treatments for their patients.”
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A cautionary tale

→ From the IBM website:

“Watson for Oncology combines leading oncologists’ deep expertise in cancer care 

with the speed of IBM Watson to help clinicians as they consider individualized 

cancer treatments for their patients.”

→ From STAT in 2017:

“IBM’s Watson supercomputer recommended ‘unsafe and incorrect’ cancer 

treatments, internal documents show”
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A cautionary tale

→ From the IBM website:

“Watson for Oncology combines leading oncologists’ deep expertise in cancer care 

with the speed of IBM Watson to help clinicians as they consider individualized 

cancer treatments for their patients.”

→ From STAT in 2017:

“IBM’s Watson supercomputer recommended ‘unsafe and incorrect’ cancer 

treatments, internal documents show”

→ From FORBES in 2017/2018:

“IBM announced that its Watson Health chief had stepped down" and “its once-

hyped A.I. business has been scaled back with layoffs”

Is there another way forward?
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Linking mechanism-based and data-based modeling

MethodsMethods

Mechanism-based modeling

Deep learning

Calibration

Model parameters

Predict response

Train network

Input Prediction: parameters & response

M
ea

su
re

d

V1 V2 V3

M
o
d
el

N
et

w
o
rk

C
ellu

larity

0

2e6

Results

N
e
tw

o
rk

 Δ
c
e
ll

u
la

ri
ty

 (
V

1
à

V
3

)

Measured Δcellularity (V1àv3)

-0.5

×109

-4.0

-2.5

-4.0 -0.5 ×109

Median across cross val.

Range across cross val.

CCC=0.95

-2.5

Representative test 
patient:

Across test cohort:
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A Plea

If you want to design something that is useful for an individual human 

being, you must rely on that human being’s unique characteristics

• High-consequence decisions (e.g., those in oncology) must be based on 

more than just data analytics

→ These decisions must incorporate biophysical processes that can be 

calibrated with patient-specific data to make patient-specific predictions

• Statistical inference—though, enormously powerful—relies on properties 

of large populations that obscure conditions specific to the individual 

• So, build your neural networks if you must… 

… but please don’t forget about F = ma
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Thank you very much 

for your time and attention.

@UTCompOnco

cco.oden.utexas.edu

tey@utexas.edu
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